# The Structure of Bis( 1,3-benzothiazole)dichlorocobalt(II) 

By R. E. Oughtred<br>School of Construction and Building Services, Newcastle upon Tyne Polytechnic, Newcastle upon Tyne NE1 8ST, England<br>E. S. Raper<br>School of Chemical and Life Sciences, Newcastle upon Tyne Polytechnic, Newcastle upon Tyne NE 1 8ST, England<br>and I. W. Nowell and L. A. March<br>Department of Chemistry, Sheffield City Polytechnic, Pond Street, Sheffield S11WB, England

(Received 30 November 1981; accepted 4 March 1982)


#### Abstract

Co}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NS}_{2}\right)_{2} \mathrm{Cl}_{2}\right], \quad \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{CoN}_{2} \mathrm{~S}_{2}\), $M_{r}=400 \cdot 03$, monoclinic, $C 2 / c, a=7.901$ (4), $b=$ 12.994 (6), $c=15.042$ (6) $\AA, \beta=90.58$ (5), $U=$ $1544.23 \AA^{3}$, Mo $K \alpha, \lambda=0.71069 \AA, Z=4, D_{m}=$ 1.70 (4), $D_{c}=1.72 \mathrm{Mg} \mathrm{m}^{-3}, \mu(\mathrm{Mo} K a)=1.62 \mathrm{~mm}^{-1}$, $F(000)=796$. Final $R=0.048$ for 1122 reflections having $I / \sigma(I) \geq 3 \cdot 0$. The Co atom lies on a twofold axis, and is tetrahedrally coordinated to the Cl atoms [ $\mathrm{Co}-\mathrm{Cl} 2.234$ (2) $\AA$ ] and to the heterocyclic N atoms in the benzothiazole rings $[\mathrm{Co}-\mathrm{N} 2.057$ (5) $\AA$ ]. The thiazole rings are planar and have a dihedral angle of


 $130.4(15)^{\circ}$.Introduction. A variety of metal complexes of the $\mathrm{S}, \mathrm{N}$-containing heterocyclic molecule benzothiazole (bt) and its 2 -substituted derivatives, $R=\mathrm{NH}_{2}, \mathrm{CH}_{3}$ and Cl , (Fig. 1) have been prepared and characterized. With first-row transition and related metals ( $M=\mathrm{Fe}$, $\mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}$ and Zn ) the ligand normally coordinates through its N atom (Chan, Goodgame \& Weeks, 1968; Goodgame \& Weeks, 1966; Duff, Hughes \& Rutt, 1968; Campbell, Card, Grzeskowiak \& Goldstein, 1970; Birchall \& Morris, 1972). Coordination of bt by bidentate bridging, involving both hetero atoms, has been found in $\mathrm{Ni}(\mathrm{bt}) \mathrm{Br}_{2}$ (Duff et al., 1968). While $\sigma$-donating processes dominate in the bonding of the ligand to transition metals, a $\pi$ interaction involving the metal and the conjugated $\mathrm{S} \because \mathrm{C}-\mathrm{N}$ portion of the molecule has been suggested and supported by ${ }^{3} \mathrm{H}$ NMR spectra for $\mathrm{Rh}^{1}$ complexes (Aresta, 1980). The gas-phase bond dissociation energy, $\bar{D}$, of the $\mathrm{Co}-\mathrm{bt}$ bond in $\mathrm{Co}(\mathrm{bt})_{2} \mathrm{Cl}_{2}$ is also indicative of $\pi$ interaction (Mortimer \& McNaughton, 1973), in addition to $\sigma$ donation through the N atom (Duff, Hughes \& Rutt, 1969). This X-ray study has been undertaken to determine the coordination geometry of $\left[\mathrm{Co}(\mathrm{bt})_{2} \mathrm{Cl}_{2}\right]$.

05677-7408/82/072044-03\$01.00


Fig. 1. Diagram of the benzothiazole molecule ( $R=\mathrm{H}$ ).

Blue crystals of $\left[\mathrm{Co}(\mathrm{bt})_{2} \mathrm{Cl}_{2}\right]$ were prepared by a previously described method (Duff et al., 1968). A crystal $0.2 \times 0.4 \times 0.5 \mathrm{~mm}$ was mounted with b coincident with the rotation ( $\omega$ ) axis of a Stoe Stadi-2 two-circle diffractometer. Intensities were measured with monochromated Mo Ka radiation using the back-ground- $\omega$-scan-background technique; 1647 unique reflections in the range $2 \theta \leq 55^{\circ}$ were measured of which 1122 had $I \geq 3 \sigma(I)$ and were considered to be observed. Corrections for Lorentz and polarization but not absorption effects were made. Systematic absences do not distinguish between space groups $C c$ and $C 2 / c$ but the latter, when $Z=4$, requires the molecules to be located in special positions. Subsequent analysis confirms the centrosymmetric space group with the Co atoms located on a twofold axis. A Patterson map enabled the $y$ coordinate of the Co atom to be determined; the remaining atoms were found from successive difference-electron-density maps. Scattering factors were calculated with an analytical approximation (International Tables for X-ray Crystallography, 1974). All H atoms were located but their parameters were not refined; those associated with the
six-membered rings were placed in calculated positions (C-H $1.08 \AA$ ). Full-matrix least-squares refinement with anisotropic thermal parameters gave a final $R=$ 0.048 , unit weights being used in the calculations. Final positional parameters for non- H atoms are listed in Table 1.* Bond lengths and angles are given in Table 2 and mean-planes' data in Table 3.

[^0]Table 1. Final fractional coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic temperature factors defined according to Willis \& Pryor (1975) with e.s.d.'s in parentheses

|  | $x$ | $y$ | $z$ | $B_{\text {eq }}\left(\AA^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| Co | 0 | 8561 (1) | 7500 | 2.53 (5) |
| Cl | 2382 (2) | 9487 (1) | 7539 (1) | 3.77 (8) |
| S(1) | 1237 (3) | 6014 (1) | 5536 (2) | 4.24 (9) |
| N(3) | 256 (6) | 7580 (4) | 6436 (4) | 2.7 (2) |
| C(2) | 978 (9) | 6675 (5) | 6494 (5) | 3.5 (3) |
| C(4) | -119(7) | 7808 (4) | 5554 (4) | 2.5 (3) |
| C(5) | 332 (8) | 7028 (5) | 4952 (4) | 3.0 (3) |
| C(6) | 27 (9) | 7138 (6) | 4056 (5) | $4 \cdot 1$ (3) |
| C(7) | -738(9) | 8025 (7) | 3762 (5) | 4.6 (4) |
| C(8) | -1187 (9) | 8813 (6) | 4362 (5) | $4 \cdot 0$ (3) |
| C(9) | -881 (8) | 8710 (5) | 5253 (4) | $3 \cdot 0$ (3) |

Table 2. Bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

Symmetry code

$$
\text { None } x, y, z ; \text { (i) }-x, y, 1 \cdot 5-z
$$

The coordination sphere

| $\mathrm{Co}-\mathrm{Cl}$ | $2.234(2)$ | $\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl}^{\mathrm{i}}$ | $114.8(3)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Co}-\mathrm{N}(3)$ | $2.057(5)$ | $\mathrm{Cl}-\mathrm{Co}-\mathrm{N}(3)$ | $105.3(1)$ |
|  |  | $\mathrm{Cl}-\mathrm{Co}-\mathrm{N}\left(3^{i}\right)$ | $113.7(2)$ |
|  |  | $\mathrm{N}(3)-\mathrm{Co}-\mathrm{N}\left(3^{i}\right)$ | $103.4(3)$ |

The ligands

| $\mathrm{S}(1)-\mathrm{C}(2)$ | $1.692(7)$ | $\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(5)$ | $89.6(3)$ |
| :--- | :--- | :--- | ---: |
| $\mathrm{C}(2)-\mathrm{N}(3)$ | $1.309(7)$ | $\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ | $109 \cdot 1(5)$ |
| $\mathrm{N}(3)-\mathrm{C}(4)$ | $1.389(8)$ | $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{N}(3)$ | $114 \cdot 1(5)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | $1.407(8)$ | $\mathrm{C}(4)-\mathrm{N}(3)-\mathrm{C}(2)$ | $110 \cdot 1(5)$ |
| $\mathrm{C}(5)-\mathrm{S}(1)$ | $1.734(7)$ | $\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{S}(1)$ | $117 \cdot 1(5)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)$ | $1.374(10)$ | $\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{C}(5)$ | $120.6(6)$ |
| $\mathrm{C}(6)-\mathrm{C}(7)$ | $1.373(11)$ | $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ | $120.9(6)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)$ | $1.413(11)$ | $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$ | $118 \cdot 4(7)$ |
| $\mathrm{C}(8)-\mathrm{C}(9)$ | $1.365(9)$ | $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ | $121 \cdot 0(7)$ |
| $\mathrm{C}(9)-\mathrm{C}(4)$ | $1.392(8)$ | $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | $120.8(7)$ |
| $\mathrm{C}(2)-\mathrm{H}(21)$ | 0.917 | $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(4)$ | $118 \cdot 3(6)$ |
|  |  | $\mathrm{S}(1)-\mathrm{C}(5)-\mathrm{C}(6)$ | $130 \cdot 0(5)$ |
|  |  | $\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{N}(3)$ | $125 \cdot 3(5)$ |
|  |  | $\mathrm{Co}-\mathrm{N}(3)-\mathrm{C}(2)$ | $123 \cdot 4(4)$ |
|  | $\mathrm{Co}-\mathrm{N}(3)-\mathrm{C}(4)$ | $126 \cdot 1(4)$ |  |
|  |  | $\mathrm{H}(21)-\mathrm{C}(2)-\mathrm{S}(1)$ | $125 \cdot 1$ |
|  |  | $\mathrm{H}(21)-\mathrm{C}(2)-\mathrm{N}(3)$ | 117.4 |

Table 3. Distances $(\AA)$ of relevant atoms from leastsquares planes

The equations of the planes are referred to orthogonal axes.
Plane $A \mathrm{~S}(1), \mathrm{C}(2), \mathrm{N}(3), \mathrm{C}(4), \mathrm{C}(5), \mathrm{C}(6), \mathrm{C}(7), \mathrm{C}(8), \mathrm{C}(9)$
$0.9016 X+0.4192 Y-0.1069 Z-3.1947=0.0000$
IS(1), -0.005 (2); C(2), 0.004 (7); N(3), 0.008 (5);
C(4), 0.003 (5); C(5), 0.005 (6); C(6), 0.004 (7); C(7), -0.006 (7); $\mathrm{C}(8),-0.002$ (7); C(9), 0.004 (6); Co, 0.158 (1) Al

Plane $B \mathrm{Co}, \mathrm{Cl}, \mathrm{Cl}^{i}$
$0.0312 X+0.0000 Y-0.9995 Z+11.2790=0.0000$
The angle between planes $A$ and $B$ is $82.2(8)^{\circ}$.

Discussion. The Co atoms lie on twofold axes along $\mathbf{b}$ and are tetrahedrally coordinated to the Cl and N atoms of the heterocyclic molecule (Fig. 2). The angles about the Co atom are slightly distorted from those of a regular tetrahedron, the maximum deviation being $6 \cdot 1^{\circ}$. The $\mathrm{Co}-\mathrm{Cl}$ and $\mathrm{Co}-\mathrm{N}$ bond lengths are in the range previously reported for related systems (Raper, Oughtred, Nowell \& March, 1981; Antti \& Lundberg, 1972; Manojlović-Muir \& Muir, 1974). Both the fiveand six-membered rings of the heterocyclic molecule are effectively coplanar (Table 3). The dihedral angle between the two heterocyclic molecules in the complex is $130.4(15)^{\circ}$. Planar benzothiazole rings have been reported in both the free molecule (Chesick \& Donohue, 1971) and metal complexes of its derivatives (Nardelli, Pelizzi \& Pelizzi, 1975; Thompson, Ball \& Trotter, 1980). Within the fused benzene ring the $\mathrm{C}-\mathrm{C}$ bond lengths range from 1.413 (11) to 1.365 (9) $\AA$; the latter value is just possibly significantly different from the standard C-C (benzene) value of $1.397 \AA$ (Bacon, Curry \& Wilson, 1964). Such differences are common, particularly in fused-ring systems (Stenson, 1970).
The $\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(5)$ angle $\left[89.6(3)^{\circ}\right]$ is typical of S-containing five-membered heterocyclic molecules (Fehlmann, 1970; Stenson, 1970). The S(1)-C(2) and $\mathrm{S}(1)-\mathrm{C}(5)$ bond lengths are significantly different and possess $50 \%[1.692(7) \AA]$ and $40 \%$ [1.734 (7) $\AA]$ SCF $\pi$ character respectively (Trinajstić, 1968). In addition, significant differences exist between the $\mathrm{C}(2)-\mathrm{N}(3) \quad[1.309(7) \AA]$ and $\mathrm{C}(4)-\mathrm{N}(3)$ $[1.389(8) \AA]$ bonds. These observations suggest that localized $\pi$-electron density exists in the


Fig. 2. Perspective view of the molecule with the atom labelling.
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{N}(3)$ portion of the heterocyclic molecule in this complex. Within uncoordinated benzothiazole derivatives the $\mathrm{C}-\mathrm{S}$ bonds range from 1.73 to $1.78 \AA$ while the $\mathrm{C}-\mathrm{N}$ distances are in the range 1.28 to $1.45 \AA$ and are frequently significantly different from one another (Stenson, 1970). Similar trends have been observed among metal complexes of thiazole and benzothiazole derivatives (Caira \& Nassimbeni, 1974; Raper et al., 1981; Thompson et al., 1980). Consequently, the localization of $\pi$ density in the $\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{N}(3)$ portion of the molecule appears to be significant in this structure.

A possible explanation for this localized $\pi$ density may be that it is part of the process of optimizing the factors. which are likely to favour a $\pi$ interaction between the $d$ orbitals of the $\mathrm{Co}^{11}$ ion and the heterocyclic portion of the ligand molecule. Localizing the $\pi$ density in the $\mathrm{N}(3)-\mathrm{C}(2)-\mathrm{S}(1)$ region of the ligand molecule and narrowing the $\mathrm{Co}-\mathrm{N}(3)-\mathrm{C}(2)$ angle $\left[123.4(4)^{\circ}\right]$ at the expense of the $\mathrm{Co}-\mathrm{N}(3)-\mathrm{C}(4)$ angle $\left\lceil 126 \cdot 1\right.$ (4) ${ }^{\circ}$ | will favour such an interaction. However, since the $\mathrm{Co}-\mathrm{N}(3)$ distance. 2.057 (5) $\AA$, is normal for a $\sigma$ bond and the $\mathrm{Co} \cdots \mathrm{C}(2)$


Fig. 3. Projection of the unit cell along $\mathbf{c}^{*}$.
distance, 2.985 (9) $\AA$, is rather long, this suggests that a $d \pi-p \pi$, metal-ligand interaction is likely to be weak and a minor component of the bonding scheme in this complex.

A projection of the unit cell along $\mathbf{c}^{*}$ is shown in Fig. 3.

## References

Antti, C. J. \& Lundberg, B. K. S. (1972). Acta Chem. Scand. 26, 3995-4000.
Aresta, M. (1980). Inorg. Chim. Acta, 44, L3-L4.
bacon, G. E., Curry, N. A. \& Wilson, S. A. (1964). Proc. R. Soc. London Ser. A, 279, 98-110.
birchall, T. \& Morris, M. F. (1972). Can. J. Chem. 50, 211-216.
Caira, M. R. \& Nassimbeni. L. R. (1974). Acta Cryst. B30. 2332-2337.
Campbell, M. J. M., Card, D. W., Grzeskowiak, R. \& Goldstein, M. (1970). J. Chem. Soc. A. pp. 672-675.
Chan, N. N. Y.. Goodgame, M. \& Weeks. J. (1968). J. Chem. Soc. A, pp. 2499-2501.
Chesick, J. P. \& Donohue, J. (1971). Acta Cryst. B27, 1441-1444.
Duff, E. J., Hughes, M. \& Rutt, K. J. (1968). J. Chem. Soc. $A$, pp. 2354-2357.
Duff, E. J., Hughes, M. \& Rutt, K. J. (1969). J. Chem. Soc. $A$, pp. 2101-2105.
Fehlmann, M. (1970). Acta Cryst. B26, 1736-1741.
Goodgame, M. \& Weeks, M. J. (1966). J. Chem. Soc. A, pp. 1156-1159.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Manojlović-Muir, L. J. \& Muir, K. W. (1974). Molecular Structure by Diffraction Methods, Vol. II. pp. 297-330. London: The Chemical Society.
Mortimer, C. T. \& McNaughton, J. L. (1973). Thermochim. Acta, 6, 269-274.
Nardelli, M., Pelizzi, C. \& Pelizzi, G. (1975). J. Chem. Soc. Dalton Trans. pp. 1595-1597.
Raper, E. S., Oughtred, R. E., Nowell, I. W. \& March, L. A. (1981). Acta Cryst. B37, 928-930.

Stenson, P. (1970). Acta Chem. Scand. 24, 3729-3738.
Thompson, L. K., Ball, R. G. \& Trotter, J. (1980). Can. J. Chem. 58, 1566-1576.

Trinajstić, N. (1968). Tetrahedron Lett. 12, 1529-1532.
Willis, B. T. M. \& Pryor, A. W. (1975). Thermal Vibrations in Crystallography, pp. 101-102. Cambridge Univ. Press.


[^0]:    * Lists of structure factors, anisotropic thermal parameters and H -atom coordinates have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36815 ( 10 pp. ). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

